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SUMMARY 
Vertex-based multidimensional upwind schemes for scalar advection are compared with shock-capturing SUPG 
finite element methods based on linear triangular elements. Both methods share the same compact stencil and are 
formulated as cell-wise residual distribution methods. The distribution for the finite element method is 1/3, 
supplemented with a Lax-Wendrov-type dissipation term, while the distribution for the upwind schemes is limited 
to the downstream nodes of the element. The multidimensional upwind schemes use positivity as the monotonicity 
criterion, while the finite element method includes a residual-based non-linear dissipation. 

For hyperbolic systems such as the compressible Euler equations the upwind method relies on a 
multidimensional wave model to decompose the residual into scalar contributions. From this observation a new 
SUPG formulation for systems is proposed in which the scalar SUPG method is applied to each of the 
decomposed residuals obtained from the wave model, thereby providing a better-founded definition of the ‘t 

dissipation matrix and shock-capturing term in the SUPG methods. 

KEY WORDS SUPG finite element method; multidimensional upwinding; cell vertex advection schemes; 
Euler equations 

1 .  INTRODUCTION 

Finite element methods for advection-dominated partial differential equations have now reached a high 
level of maturity based on many new developments over the last decade.’-3 These include the 
introduction of the SUPG test function for scalar advection4 to avoid contamination of the entire 
solution by spurious oscillations arising for the standard Galerkin method in the underresolved parts of 
the domain; addition of residual-based non-linear artificial dissipation2,’ to suppress oscillations 
remaining in underresolved domains; and finally the extension of these two concepts to systems by 
construction of an SUPG dissipation r-matrix and generalized discontinuity-capturing terms.”’ 

Both the SUPG test function and the non-linear dissipation are well understood and mathematically 
founded for a scalar advection-difision equation, while it is well recognized that the extension to 
systems with non-commuting Jacobians is still heuristic. It is precisely the goal of this paper to 
contribute in this respect by proposing the wave-modelling tool developed in the context of 
multidimensional upwind schemes as a way of extending scalar SUPG to systems. 

Multidimensional vertex-based upwind methods on triangles have been developed during the last 5 
years in a joint effort between the University of Michigan and the von Karman Institute; see References 
9-13 for a detailed account. In a first phase, scalar advection schemes on triangles (or tetrahedra in 3D) 
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have been constructed based on the principle of residual distribution (or fluctuation splitting)." For 
each triangle the residual is evaluated and subsequently distributed over the vertices with weighting 
coefficients summing to unity. It turns out that by limiting the distribution to the downstream vertices 
only, i.e. creating upwind schemes, the schemes can be made positive by construction, thus ensuring 
monotonic discontinuity capturing. Adding the constraint of linearity preservation, which is equivalent 
to the residual property in finite elements, is impossible unless one introduces non-linearity in the 
schemes (even when solving a linear advection equation). This is similar to what occurs with the TVD 
schemes in the finite volume setting. In this way, compact non-linear high-resolution upwind advection 
schemes on triangles have been developed which are positive by construction. The most recent 
development was a reformulation of these non-linear schemes using classical limiter hnctions such as 
the minmod fun~ti0n. l~ 

Since these upwind schemes share the same compact stencil as finite element schemes on linear 
triangles, it is natural to present them in the same framework and to compare their performances, which 
is the second goal of this paper. The SUPG schemes for scalar advection can be written as a central 
distribution (1/3) with additional Lax-Wendrov-type di~sipation. '~. '~ An order-of-accuracy study on a 
smooth test case (with solution fully resolved by the mesh) reveals second-order accuracy for linear 
SUPG and the linear (non-monotonic) upwind advection scheme termed LDA, while the non-linear 
schemes on the same test case show an order of accuracy of 1.6, both for the shock-capturing SUPG 
and the non-linear upwind scheme termed PSI." On test cases with underresolved layers the non- 
linear upwind scheme is slightly less diffusive than the optimally tuned shock-capturing SUPG 
scheme. 

As mentioned before, the application of the scalar advection upwind schemes to non-diagonalizable 
systems such as the Euler equations for compressible flow needs as a prerequisite a device, called a 
wave model, which decomposes the system residual into a set of scalar contributions, each associated 
with a well-defined advection direction and speed. Many such wave models have been proposed over 
the last years with some degree of success1' and the subject is certainly not fully mature. However, 
over the last year it has been recognized that the key property of a wave model is the linear 
independence of the eigenvectors onto which the residual is projected. Only in this way is one assured 
that a vanishing system residual will result in vanishing contributions of each scalar component. This 
effectively rules out some of the early wave models based on a number of (linearly dependent) simple 
waves. 

which satisfy this property. They use the Mach lines and 
streamline as propagation directions in supersonic flow and an algebraic extension (the pseudo-Mach 
lines) together with the streamline in subsonic flow. 

Once a satisfactory wave model is available, it is very natural and tempting to use it as well in the 
context of the SUPG finite element methods by applying the scalar SUPG test function and shock- 
capturing term to each of the decomposed residuals given by the model. In this way, some of the 
heuristics in the system extension of SUPG is removed as well. The computational results presented in 
this paper show the potential of this approach. 

16 

In this paper we focus on recent 

2. SCALAR ADVECTION 

Fluctuation splitting or residual distribution is a cell vertex space discretization for the scalar advection 
equation 

- 4  

ut + A .  v u  = 0, (1) 
where is the advection vector, which depends on the space co-ordinates and eventually on the 
solution itself. For simplicity, let it be constant; see e.g. Reference 10 for the non-linear case and for 
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conservation aspects. The solution is approximated by a continuous piecewise linear representation on 
triangles, 

where u j  is the point value u(xi, y j )  and wj(x, y )  is the standard linear finite element basis function. For 
a given triangulation of the domain the residual or ‘fluctuation’ for each triangle Twith surface S, can 
be computed as 

where 

and Z; is the inward normal of the side Ei opposed to node i, scaled by the length of Ei. Considering 
simple Euler explicit time integration, all residual distribution schemes can be cast into the following 
compact form for mesh point i: 

where the summation extends over all triangles having i as common vertex, pT,i is the so-called 
distribution coefficient and Si is the area of the median dual cell’ around node i .  For conservation and 
consistency the coefficients bzj  are chosen such that for each triangle Twith vertices j ,  xj=,j?, = 1. 
For compactness of the stencil the restriction is made to consider only the distribution of the fluctuation 
&within the triangle T 

Referring to Reference 10, three essential design criteria can be imposed on a distribution scheme, 
namely continuity, positivity (9) and linearity preservation (99). Continuity requires that the 
distribution coefficients p z j  be at least continuous for changes in advection speed as well as for 
changes in the solution. Positivity means that every new value uT+l can be written as a convex 
combination of values at time level n. This guarantees a maximum principle which prohibits the 
occurrence of new extrema and ensures stability of the explicit scheme (5). Linearity preservation or 
exactness for linear polynomials requires that the scheme preserve the exact steady state solution when 
this is a linear function of the space co-ordinates x and y for an arbitrary triangulation of the domain. 
This is known as the residual property in the finite element context. A necessary and sufficient 
condition for a scheme to be 99’ is that the distribution coefficients azj be bounded for +T -+ 0. 

The residual can be distributed to the nodes of a triangle in many ways and well-known schemes can 
be identified in this framework. We briefly review some of these schemes and give the residual 
distribution interpretation of SUPG. 

2.1. Upwind fluctuation-splitting schemes 

Upwind fluctuation-splitting schemes are upwind in the sense that no contribution is sent to 
upstream nodes. This can be expressed as 

j?T, j  = 0 if kj < 0. ( 6 )  

Figure 1 shows the two possible situations that can occur in a triangle. In case (a) there is only one 
inflow side and the entire fluctuation is sent to the unique downstream node 3, while in case (b) the 
fluctuation is split between the two downstream nodes 1 and 3. Both positive and linearity-preserving 
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1 1 

Figure 1. (a) One-target situation. (b) Two-target situation 

schemes have been developed. To combine the two properties, it has been proven that the schemes 
have to be made non-linear." 

A straightforward linear 29 scheme is the LDA scheme given by1* 

The linear positive (but therefore not 29) scheme with lowest dissipation is the N scheme given by 

4; P;,; = &' 
where 

It is easy to verify that this scheme is positive; however, it is not 99 since the limQ,,o Ip:,iI is not 
bounded. 

A non-linear scheme combining positivity and linearity preservation is the PSI scheme.12319 
RecentlyI3 it has been found that this non-linear scheme can be written as a limited version of the N 
scheme, namely as 

where @(r)  is the well-known minmod limiter 

@ ( r )  = max(O,min(r, 1)). (1 1 )  

One verifies that applying the limiter does not destroy positivity, but it bounds the coefficient 
between zero and one, rendering the scheme 29. 

the PSI scheme is positive under a CFL condition, unlike the LDA scheme. 
Summarizing, both the LDA and PSI schemes have the continuity and 29 properties. In addition, 

2.2. Fluctuation-splitting interpretation of the Lax- Wendrov scheme 

To obtain the distribution coefficients for a Lax-Wendrov scheme, let us write, to second order, 
- + +  

u"" - U" z At ut + At2utt = -AtA . VU - At2Si. f u r .  (12) 
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Integrating now over the median dual cell area Si relative to node i and lumping the LHS leads to an 
equidistribution supplemented with a dissipation term proportional to an edge-wise CFL number:I4 

2.3. Fluctuation-splitting interpretation of SUPG 

For the classical Galerkin finite element method it can easily be shown that the distribution 
coefficient is pyy = i, which is not surprising since this method is known to be a central-type 
discretization. 

Hughes’ version of SUPG makes use of asymmetric test hnctions of the form 

wi = wi + z,Z.  f W i  + z,Si,, . f W j ,  (14) 
where the first term is the standard Galerkin test function, the second term is the linear SUPG 
modification and the third term is the non-linear discontinuity-capturing dissipation. The vector i l l  is 
the projection of the advection vector onto the direction of the local gradient of the solution, and t l  
and z2 are two parameters defined as follows in a pure advection context: 

h being the size of the discretization. The distribution coefficients for this method have been obtained 
in Reference 19 and take the form 

where (ki)ll = . Zi is defined as ki but using the &-field. For z1 = +At and z2 = 0 this scheme 
reduces precisely to the Lax-Wendrov scheme of Section 2.2, while with z1 = 0 and t2 = ;At we have 
a Lax-Wendrov scheme based on the advection speed i l l .  

While Hughes introduces the so-called discontinuity-capturing term in the test function itself, 
Johnson uses an artificial viscosity k2 The modified equation solved when using ri- is 

The SUPG test function considered is as (14) but without the non-linear term. To derive the 
distribution coefficients, we use a simplified form of the artificial viscosity proposed by Johnson2 and 
given by 

More precisely, the jump term which is usually added to the residual in the numerator of ri- is neglected. 
This simplification is acceptable since this jump term has been experimented numerically to be of very 
small effect in the computations. With this simplification the distribution coefficients take the form 

Now, since 1 i 1 1 1  = 11. f u l / l f u / ,  the distribution coefficients of Johnson’s and Hughes’ versions of 
SUPG appear to be the same, which confirms the well-known equivalence of these two versions for a 
pure advection equation with constant advection vector. 
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2.4. Numerical results for scalar advection 

Order of accuracy at steady state. In Reference 15 an accuracy study was performed to estimate the 
order of different advection schemes for smooth solutions resolved by the mesh. The definition of the 
problem considered for this study was proposed by Struijs.” T_he computational domain is the unit 
square R = [ - 1, 01 x [0, 13. The advection speed vector is A = (y, - x) which corresponds to a 
clockwise rotation around the origin, while the boundary conditions are u = 0 at the right boundary 
and u = &-2x [ l  - cos(2nx)l at the lower boundary. 

Using the &-norm, the following schemes have been compared: the N, LDA and PSI schemes, 
Johnson’s version of SUPG without artificial viscosity (SUPG) and with artificial viscosity 
(SUPG + AV). Table I summarizes the orders of accuracy as well as the properties they satis@. 

A first observation is that the introduction of a non-linear artificial viscosity decreases the order of 
accuracy of SUPG. This is the price one has to pay for increasing the robustness of SUPG in the 
presence of sharp layers. This is also the case for the non-linear PSI scheme compared with the linear 
LDA scheme. The value of 1 -99 for linear SUPG is better than that predicted by theory,20 since global 
error estimates for smooth solutions give an accuracy O(k + 4) with a polynomial of degree k. 
However, this theoretical value must be taken as a minimum. Indeed, numerical studies performed by 
Navert2’ suggest that linear SUPG has an accuracy O(k + 1) in many cases in which the exact solution 
is sufficiently smooth, which is confirmed by Hughes’ and our results. There is a strong similarity in 
performance for both the two linear 2’9 and the two non-linear 2’9 schemes, 

Rotational advection of a squareprofile. Consider now a linear advection problem in which a square 
profile imposed at the inflow boundary is rotationally advected over the domain [ - 1, 11 x [0, 11. 
The advection speed vector is x’ = b, - x) and the boundary conditions are 

u(x,O) = 0 if - 1-00 < x < -0.65, 
u(x,O) = 1 if - 0.65 < x < -0.35, 
u(x ,  0) = 0 if - 0.35 < x < 0.00, 
u ( - 1 , x )  = 0 if 0.00 < y  < 1.00, 
u(x ,  1) = 0 if 0.00 < x < 1.00. 

The exact steady state solution is u = 1 in between the two half-circles with radii 0.35 and 0.65 and 
u = 0 elsewhere. The mesh used is regular and isotropic, with 61 nodes in the x-direction and 3 1 nodes 
in the y-direction, giving a total of 1891 nodes and 3600 elements. The mesh and the isolines of the 
steady state solutions are depicted in Figure 2. The SUPG method and the LDA scheme are both non- 
monotonic and produce very similar oscillatory solutions. The SUPG + AV method shows a 
monotonic solution but does not perform as well as the PSI scheme. Indeed, the introduction of the 
artificial viscosity cancels the over- and undershoots but increases the crosswind diffusion. In all cases 
the square profile spreads out in the streamwise direction. Since the characteristics propagate parallel 
to the discontinuities themselves, there is nothing to counteract this diffusive effect. 

Table I. Properties and order of accuracy for different fluctuation-splitting and SUPG schemes 

Scheme Non-linear Positive Property Y9’ Order of accuracy 

N No Yes No 0.83 
LDA No No Yes 1.95 
PSI Yes Yes Yes 1.65 
SUPG No No Yes 1.99 
SUPG + AV Yes No Yes 1.63 
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(b) LDA-scheme 

rnl" 0 00 
r n l X  I00 

( e )  SUPG + AV ( d )  PSI-schernr 

Figure 2. Rotational advection of a square profile: mesh and contour lines 

3. EULER EQUATIONS 

The Euler equations in conservative form are 

Ut + Fx + G y  = 0, 

where U is the vector of conservation variables and F and G are the flux vectors: 

Here p is the density of the gas, u and v are the x- and y-components of the velocity vector 5, 
respectively, p is the static pressure, E is the specific total energy and H = E + p / p  is the specific total 
enthalpy. The system is closed by the equation of state, which in the case of a perfect gas may be 
written as 

with y the ratio of specific heats. We denote the speed of sound by a = J(yp/p). 
For a system of equations the fluctuation-splitting schemes are based on an eigenvector 

decomposition of the residual in each cell, which then allows the application of the scalar advection 
scheme to each component. 

In one dimension the solution gradient of the Euler equations can be projected uniquely onto the 
eigenvectors 8 of the Jacobian matrix A = dF/dU, leading to the decomposition of the flux 
divergence F, into waves or 'characteristics' travelling along the axis. In 2D the waves can travel in an 
infinite number of directions. The decomposition of the flux divergence into scalar waves is therefore 
no longer unique. At present three different approaches exist which are compared in References 11 and 
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17. The first approach is based on characteristic compatibility equations of the Euler system?2 the 
second on a simple wave decomposition of the solution'6723 and the third on a projection of the 
solution onto a basis of steady and unsteady patterns.24 Here only the two first approaches are 
considered, namely the characteristic decomposition technique and the simple wave decomposition. 

3. I .  Simple wave decomposition 

Simple wave decomposition relies on a 'pattern recognition' step whereby the local flow gradients 
are modelled by contributions of a set of simple waves. Simple waves are elementary solutions of the 
Euler equations for linearly varying flow of the form 

U(2, t) = a(?. iii - A,,,t)r + Uo = [W(?, t )  + Wolr, (23) 

where c1 and iii = cos 87: + sin O r y  are constants representing the wave strength and the direction of 
propagation of the wave front respectively; A,,, and r are the corresponding eigenvalues and right 
eigenvector of the matrix (aF/aU) cos 8 + (aG/aU) sin 8 respectively. These eigenvalues, given as 

aTe the wave speeds of two acoustic waves, a shear wave and an entropy wave respectively, while the 
right eigenvectors in the primitive variables (p ,  u, v, P ) ~  are given by 

The scalar W(2, t )  is a pseudocharacteristic variable evolving in time according to the scalar 
advection equation 

where 2 is such that . iii = A,,,. Assuming that the solution can be interpreted as the superposition of 
a discrete number K of simple waves, one has to solve for the strengths and directions of these waves to 
obtain a wave model. The requirement for a simple wave model is that it should have enough degrees 
of freedom to describe any arbitrary linear variation of the solution. Thus in 2D a wave model should 
have eight degrees of freedom (the eight components of the constant gradient) represented by the 
unknown directions andor intensities. Ideally this requires a model composed of four simple waves, 
namely one entropy, one shear and two acoustic waves, the four directions and four intensities being 
the parameters of the model. 

However, matching four such waves with a solution gradient leads to a non-linear system for the 
eight parameters which is far too complex to be useful. Therefore most models have been constructed 
with a larger basis of simple waves where some directions and intensities are fixed a priori on physical 
grounds. 

Different models have been proposed following this approach.16723 For instance, the Mach-angle- 
splitting model, developed by R ~ d g y a r d ~ ~  and valid for supersonic flows only, decomposes the 
gradient of the solution into seven waves: one entropy wave and two sets of waves each comprising two 
acoustic waves and one shear wave with propagation vector G normal to the Mach lines; see Figure 3. 
This gives a complete model since there are eight unknowns, i.e. the strength and direction of the 

w, + 1. o'w = 0, (26) 
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Figure 3. Wave directions for the Mach-angle-splitting model (entropy wave not represented) 

entropy wave and the strengths of the four acoustic and two shear waves. Note that the choice of the 
directions normal to the Mach lines cancels the speeds of two acoustic waves, so that one is left with 
five effective waves contributing to the residual decomposition. 

In conclusion, by selecting a simple wave model involving K active simple waves, the element-wise 
residual can be decomposed as 

K - l  

(Fdy - Gdx) = - C(.l". o'Wk)lk, 
k=O 

where F@ is the scalar 'pseudocharacteristic' variable and rk is its corresponding right eigenvector in 
conservative variables. 

3.2. Characteristic decomposition 

Simple wave models as described in the previous subsection have the drawback that they are not 
9.9, since the eigenvectors are necessarily linearly dependent if the number of effective waves 
exceeds four. The approach considered here is therefore based on a selection of four independent 
compatibility equations. 

Originally Deconinck et al. 22 proposed an approximate diagonalization procedure for the Euler 
equations based on a two-parameter similarity transformation. Here we consider a generalization of 
this approach towards a three-parameter similarity tran~formation"~'~ given by 

where W ( d l ) ,  d2), 17(~)) is a vector of characteristic variables, U is the vector of conservation variables, 
is the transformation matrix from conservative to characteristic variables, ,?(I), Z(') and d3) are 

three given vectors in x-y space, $ I )  is the vector perpendicular to i$ I )  and similarly for d2) and a3). 
Substituting into the Euler system (20), the following system of Compatibility equations is obtained: 

p*- I 

wp + ii. VWO +qo = 0 ,  (29a) 

w,' + ii. v w l  + ql = 0 ,  

W: + (ii + a d 2 ) )  . v w 2  + q2 = 0, 

w,' + (ii + a d 3 ) )  . v w3 + q3 = 0, 
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where the qk are coupling terms of the form 
0 4 = 0 ,  

q1 = $') . V p / p ,  

( 3 0 4  
a 
2 

43 = - $ 3 ) .  ($3' . V)u', 

For certain choices of id'),  id2) and d3)  one can obtain an optimal decoupling of the Euler system, 
since q' can be set to zero by choosing id') parallel to the pressure gradient and q2 = q3 can be 
minimized by choosing adequately d2)  and id3). This was the approach followed in Reference 22, but 
it leads to gradient-dependent and therefore non-robust decompositions. 

In the new formulation considered in References 13 and 17 the parameters are no longer chosen so 
as to minimize the off-diagonal terms appearing in the set of compatibility equations, but rather so as to 
express these compatibility equations in more physical directions. 

normal to the streamline and the vectors d2)  and d3) normal 
to the two Mach lines which make angles % p with the streamline, 

For instance, by taking the vectors 

1 
p =  tan-' (J(M2 - 1)) 

one obtains the optimal characteristic decomposition for steady supersonic flows, effectively 
upwinding the Riemann invariants of steady supersonic flow along their corresponding characteristics 
(see Reference 17 for more details). 

This approach becomes ill-defined when M- I f ,  because the steady equations become parabolic. 
Therefore, in order to avoid a singularity occurring at M = 1, we consider two splittings corresponding 

normals to the Mach lines; see Figure 4. In order to extend this decomposition to subsonic flows, we 
consider an algebraic continuation of p by defining a pseudo-Mach angle 

to the choices = z(2) = - j Z ( 3 )  = zA and i t ( ' )  = j t ( 2 )  = -f&3) = j lB,  where itA and zB are the 

p =  tan-' ( J p 4 2  1 - 1 ,) 
Averaging these two splittings gives a characteristic model called the pseudo-Mach angle (PMA) 

decornpo~ition.'~ Figure 4 shows the different advection directions used. As can be seen, the model is 
continuous at the sonic point and always respects the domain of dependence of the steady flow as 
determined by the nature of the equations. In particular, when M + 0, the decomposition becomes 
isotropic. 

Summarizing, for the PMA decomposition the element-wise residual can be decomposed as 

with 8 the right eigenvectors appearing in the transformation matrix P* 

3.3. Multidimensional upwind schemes 

Once an analytical simple wave model (for which qk = 0, Vk) or a characteristic decomposition has 
been chosen, the residual for each triangle is decomposed as 

K - l  - 
(Fdy - Gdr) = ST C(ik . o'Wk)lk + qk)rk, 

k=O 
(34) 
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M< 1 

Figure 4. Upwinding directions for pseudo-Mach angle decomposition 

where overlining denotes a suitable conservative linearization not discussed here.25 Applying now a 
scalar advection scheme to each wave, the residual of each element can be distributed in a conservative 
way to the nodes. After performing the residual distribution step, the solution can be updated. The final 
update formula can be written as 

where the summation index T carries over all triangles having i as common vertex, while P;,, 
represents the fraction of the residual of the kth wave in element T sent to node i. 

3.4. Application of wave modelling to SUPG 

Despite all efforts undertaken, the key problem of extending scalar SUPG results to general 
hyperbolic systems, in particular to the inviscid compressible Euler equations, remains without 
definitive answer. Indeed, the construction of the z stabilization matrix and the shock-capturing term is 
not a trivial task. It is only under severe restrictions such as those for one-dimensional and/or 
diagonalizable systems that one can find optimal  definition^.^^' In these cases, different scalar SUPG 
test functions and non-linear dissipation can be used for each of the decoupled equations, each of them 
being optimal as in the case of a single scalar equation. For more complex cases, global generalizations 
have been defined based on approximate diagonalization or some privileged direction such as the 
streamlines or the normal to a discontinuity.26 Here, as an alternative to such global approaches, it is 
proposed to introduce the wave-modelling technique which allows the use of the scalar formulation 
also in the general case. 

Let us assume that we are equipped with a given simple wave model combining K waves (in which 
case qk = 0, Vk) or with a given characteristic decomposition. The element-wise residual of the 2D 
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Euler equations in their conservative form (20) can then be decomposed into K contributions as 
explained above: 

Each contribution is associated with a scalar advection equation in the (pseudo)characteristic variable 
F@ for which one can apply the SUPG scalar scheme. Using finite element methodology with 
piecewise linear functions in space, we thus have, for the scalar residual in node i due to wave k, 

where $ = wi + zkiko'wi is the standard SUPG test function. Note that the stability parameter z and 
the artificial viscosity ri- are defined for each individual scalar contribution: 

Thus the linear SUPG modification of the test functions is achieved for each wave in its own direction 
of propagation and the stability parameters rk are such that the amount of upstream biasing is 
controlled individually wave-by-wave. Moreover, the non-linear dissipation associated with a given 
wave has the property that it vanishes if the element-wise residual vanishes for that particular wave. 
Regrouping the K wave contributions, one obtains the global residual in conservation variables for 
node i, 

k=O k=O 

which can be written as 

It is of particular interest to separate the SUPG and the artificial dissipation terms fiom the Galerkin 
term. Indeed, the exact decomposition of the flux divergence can then be isolated, which shows that the 
Galerkin term can be computed in the classical way, i.e. without using wave modelling. 

The new formation for the compressible Euler equations presented here has the advantage of using 
only the scalar SUPG scheme for each component of the solution, which is well-defined and 
understood. 

3.5. Numerical results 

Different wave models and characteristic decompositions combined with either the fluctuation- 
splitting schemes or the SUPG method are tested and compared on a series of five test cases ranging 
from the low subsonic regime to hypersonic re-entry flow. 

Supersonic parallel jet  interaction. Two horizontal supersonic parallel jets separated by a wall are 
suddenly brought into contact.27 The interaction of the two streams produces a shock wave propagating 
in the low-pressure region, a Prandtl-Meyer expansion propagating in the high-pressure region and a 
contact discontinuity in between the two. The computational domain [0, I ]  x [0, 13 has been 
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discretized using a uniform isotropic grid with 41 x 41 nodes, giving a total of 168 1 nodes and 3200 
elements. All boundaries except the left were taken as supersonic outlets. At the left boundary, 
supersonic inlet boundary conditions have been specified: 

A42 = 2.40, 
p 2  = 1 .OO if y < 0.5, { pz = 0.50 { p1 = 0.25, 

MI = 4.00, 
p ,  = 0.50 if y > 0.5, 

The density line contours are presented in Figure 5. The first solution has been obtained with the 
global SUPG formulation recently proposed by Hansbo26 (SUPG CA), while the other two have been 
produced by combining the PSI scheme and the SUPG scalar scheme respectively with the so-called 
Mach-angle-splitting model designed by R ~ d g y a r d ~ ~  and valid for supersonic flows only. First of all 
note that the SUPG C, method does not capture the contact discontinuity very well, while the PSI 
scheme and the SUPG method using wave modelling produce close solutions showing an excellent 
resolution of the three flow features. Solution (d) is slightly more diffusive, confirming the 
observations made for the scalar problems. This could be expected, since the only difference between 
these last two methods is the advection scheme they involve. 

Supersonic wedge channel. The next test case consists of a supersonic flow at M ,  = 2.0 in a 
channel. To solve this problem, an unstructured mesh with 3987 nodes and 7683 elements was used, 
demonstrating the geometrical flexibility of the methods presently studied. The unstructured mesh (as 

I uu 

I, In1 
1 .uu 0.00 (a) Mesh 

11,111 0 500 

I 1 

( c )  PSI scheme 8: Mach angle splilting 

(b) sI:Pc; c.4 

(d) SUPG with AV 6i Mach angle splilting 

Figure 5. Parallel jet interaction: mesh and density line contours 
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well as the other unstructured meshes shown in the following) was generated using a frontal Delaunay 
method developed by Muller et a1.** and by applying afterwards a weighted smoothing technique as 
proposed by Richter.2y This technique, based on the spring analogy, alters the positions of the interior 
nodes, taking into account the degree of each node in order to better control the regularity without 
changing the topology of the grid. 

Figure 6 shows the grid and the Mach number contours produced by the SUPG scheme with non- 
linear dissipation combined with Rudgyard's Mach-angle-splitting model, by the same scheme 
associated with the PMA decomposition and finally by the PSI scheme combined with the optimal 
characteristic decomposition for supersonic flow. All methods show very similar solutions with all 
features of the flow clearly resolved. They compare well with the solution obtained by Richte?' with 
an Osher scheme on a _f 3 times finer grid. Note that the convex discontinuity of the lower wall creates 
a non-physical generation of entropy which is then advected parallel to the wall and increased through 
the successive shocks, influencing the flow downstream. 

(b) SUPG with AV & Mach angle splitting 

M,,, 1.217 

M,,,,, 2.52.5 

(c) SUPG with AV & PMA decomposition 

(d) PSI scheme & "optimal" decomposition 

Figure 6 .  Supersonic wedge channel: mesh and Mach number line contours 
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Subcriticalflow about a cylinder The flow over a cylinder at M ,  = 0.38 is now considered. The 
mesh, shown in Figure 7, consists of 8471 triangular elements and 4330 nodes, with 128 nodes on the 
body and 60 nodes in the far field. The theoretical solution is a potential solution (irrotational and 
isentropic) with no lift and no drag. Four computations have been performed. 

In the first two computations the pseudo-Mach angle decomposition was used in combination with 
the LDA scheme and the SUPG scheme without non-linear artificial viscosity, producing small values 
of lift and drag as given in Table 11. The Mach number isolines are shown in Figures 8(a) and 8(b), 
confirming the high degree of symmetry of the solution with respect to the X- and Y-axes and showing 
very low levels of spurious entropy. These two solutions compare well with the best solutions obtained 
in Reference 30. 

The third and fourth computations have been achieved using the simple wave model D (composed of 
six waves3' ) associated with the LDA scheme and the PMA decomposition associated with the SUPG 
scheme with non-linear dissipation. In the solution obtained with model D, which is not linearity- 
preserving, one can observe a large entropy error (&,, = 0.0996) and consequently an increase in 
drag (C, = 0-6760) and a complete asymmetrization of the flow with respect to the Y-axis but a good 
symmetry of the flow with respect to the X-axis, resulting in a small value of lift (CL = 0.000924). 
Essentially the same (but not so dramatic) observations can be made about the solution produced by 
the SUPG scheme with non-linear dissipation. This test case shows clearly that non-linearity- 
preserving models (such as model D) have to be avoided as well as the use of non-linear artificial 
dissipation for the SUPG scheme when dealing with subcritical flows. 

I .o 

-1.0 

-3.0 -1.0 1 .o 3.0 

Figure 7. Cylinder M ,  = 0.38: detailed view of the grid 
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Table 11. Cylinder M, = 0.38: values of CL and C,  

Solution Model Scheme C L  CD 

(a) PMA LDA -0.010689 0.000526 
PMA SUPG 0.0068 14 -0.001232 

(4 D LDA 0.000924 0.676016 
(b) 

( 4  PMA SUPG + AV 0.002084 0.324879 
~~ 

Subcritical multielement aerofoil. The flow field around a four-element aerofoil with freestream 
Mach number M ,  = 0-2 and zero angle of attack is computed using the PMA decomposition 
associated with the SUPG scheme without non-linear dissipation. Owing to the entropy generated in 
the successive stagnation regions and transported along the bodies, an additional non-standard 
dissipation has been necessary in the form of vorticity damping as used by Giles et al.32 in order to 
counteract the grid linelvelocity decoupling observed in the vicinity of the bodies. 

The grid, a detail of which is shown in Figure 9, contains 10,018 elements and 52 1 7 nodes, with the 
far field located at 15 chords. The Mach number isolines and the entropy contours are shown in 
Figures 10(a) and 10(b) respectively, while the pressure coefficient distributions along the bodies are 
shown in Figure 11. 

j Mm,i 0.000 

I 

(a )  Pseudo-Mach angle decomposition, LDA scheme ( b )  Pseudo-Mach angle decomposition, SUPC 3cheme 

( r )  Model 0, LDA scheme (d) Pseudo-Mach angle decomp.. SUPG + AV srhrmr 

Figure 8. Cylinder M ,  = 0.38: Mach number isolines 
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0.68 

0.23 

-0.22 

-0.68 

-0.1s 0.30 0.75 I .1u 

Figure 9. Multi-element airfoil: detailed view of the grid. 

Hypersonicflow about a double ellipse. The next test case corresponds to the hypersonic flow about 
a double ellipse at M ,  = 8.15 and 30" angle of attack.33 This flow is characterized by a strong bow 
shock in the front part and by a weaker shock generated at the canopy attachment point. 

The grid shown in Figure 12 has 9823 elements and 5 11 1 nodes, of which 195 are on the body. The 
computation has been performed by using the SUPG scheme with non-linear artificial dissipation 
associated with the PMA decomposition. 

The Mach number isolines of the solution are depicted in Figure 13(a), while the pressure isolines 
are shown in Figure 13(b). Figure 14 displays the pressure coefficient distribution along the body. All 
these compare well with the solutions presented in Reference 33. 

x,,,,, -0.001' 
Y,,, 0.0055 1 

Figure 10. Multielement aerofoil: M, = 0.2, a = 0" 
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Figure 1 1. Multielement aerofoil: pressure coefficient distributions along the bodies 

4. CONCLUSIONS 

Scalar SUPG shock-capturing finite element schemes have been formulated as residual distribution 
schemes and compared with multidimensional upwind schemes sharing the same compact stencil. 
Wave modelling, which is essential to extend the multidimensional scalar upwind schemes towards 
systems, turns out to be advantageous in the SUPG finite element context as well, leading to a 
systematic approach for generalizing the scalar formulation. 
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Figure 12. Double ellipse: grid 
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(b)  Pressure isolincs 

Figure 13. Double ellipse: M ,  = 8.15, a = 30" 
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Figure 14. Double ellipse: pressure coefficient distribution along the body 
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